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a b s t r a c t

A suite of geological computer programs written in Mathematica is currently available both within the
online repository for the Journal of Structural Geology as well as on the first author’s website (http://
www.sonoma.edu/users/m/mookerje/ProgramPage.htm). The majority of these programs focus on
three-dimensional strain analysis (e.g., determining best-fit strain ellipsoids, plotting elliptical data on
either a Flinn or Hsu diagram, and determining error bounds for three-dimensional strain data). This
program suite also includes a ternary diagram plotting program, a rose diagram program, an equal area
and equal angle projections program, and an instructional program for creating two-dimensional strain
path animations. The bulk of this paper focuses on a new method for determining a best-fit ellipsoid
from arbitrarily oriented sectional ellipses and methods for determining appropriate error bounds for
strain parameters and orientation data. This best-fit ellipsoid method utilizes a least-squares approach
and minimizes the error associated with the two-dimensional data-ellipse matrix elements with the
corresponding matrix elements from sectional ellipses through a general ellipsoid. Furthermore, a kernel
density estimator is utilized to yield reliable error margins for the strain parameters, octahedral shear
strain, Flinn’s k-value, and Lode’s ratio. By assuming a gamma distribution for the simulated principal
axes orientations, more realistic error bounds can be estimated for these axes orientations.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Among its many applications, Mathematica is particularly useful
for manipulating and graphically displaying data. While Mathe-
matica is relatively user-friendly, building complex programs from
scratch can be very time-consuming and is inefficient, considering
that many Earth Science users are ultimately doing very similar
types of analyses (for instance, see Haneberg’s text, Computational
Geosciences with Mathematica (Haneberg, 2004)). To this end, the
first author has assembled a suite of seventeen Mathematica files
that have applications for the earth sciences, with a particular
emphasis on strain analysis (Table 1). This suite, as well as several
sample data files, can be downloaded from the following website:
http://www.sonoma.edu/users/m/mookerje/ProgramPage.htm.
Eight of the programs deal specifically with the process of deter-
mining a best-fit ellipsoid from sectional data sets. These programs
utilize new methods for defining a best-fit ellipsoid, and four of
them utilize a novel approach for determining the error bounds of
the fit data in terms of both the ellipsoid shape and its orientation.
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These methods are described in detail in Sections 3 and 4. The
remaining nine programs are primarily graphical in nature.

For several decades, structural geologists have investigated
three-dimensional strains and have illustrated how useful these
techniques are for understanding the kinematics of deforming
materials (e.g., Cloos, 1947; Flinn, 1962; Hossack, 1967; Gairola,
1977; Mitra, 1978; Wheeler, 1986; Dewey et al., 1998; Merschat
et al., 2005; Galon et al., 2008; Mookerjee and Mitra, 2009;
Thigpen et al., 2010). Additionally, many investigators have
contributed to efforts for determining a best-fit ellipsoid from two-
dimensional data. Initially, the methods were confined to three
mutually perpendicular sections (Ramsay, 1967; Shimamoto and
Ikeda, 1976; Oretel, 1978; Miller and Oertel, 1979), then three
non-perpendicular section (Milton, 1980), and finally three or more
non-perpendicular sections (Gendwill and Stauffer, 1981; Owens,
1984; Shao and Wang, 1984; Robin, 2002; Launeau and Robin,
2005). As with our proposed method, several investigators have
employed some form of a least-squares approach (Oretel, 1978;
Miller and Oertel, 1979; Shao and Wang, 1984). Robin (2002)
provides an informative chronology for these contributions.
Furthermore, Yonkee (2000) incorporated statistics into his best-fit
ellipsoid program using a Monte Carlo simulation. Taking a similar,
simulation-based approach, our method uses kernel density esti-
mation to determine error bounds for the strain parameters,
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Table 1
List of programs in the geological programs for Mathematica suite.

List of programs

Best-fit ellipsoid
Best-fit ellipsoid with statistics
Best-fit ellipsoid for ImageJ
Best-fit ellipsoid-absolute
Best-fit ellipsoid-absolute for ImageJ
Best-fit ellipsoid with statistics for ImageJ
Best-fit ellipsoid with statistics-absolute
Best-fit ellipsoid with statistics-absolute for ImageJ
Flinn plot
Flinn plot with error regions
Hsu plot
Hsu plot with error regions
Equal area & angle projections
Rose diagram
Ternary diagram
Section data through an ellipsoid
2D pure versus simple shear
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octahedral shear strain ( 3s), Flinn’s k-value, and Lode’s ratio (n).
While this approach is new to the application of strain analysis, it is
used for other applications in the earth sciences (e.g., grain size
distributions (Buscombe, 2008), special distribution of volcanism
(Connor et al., 2008), storm frequencies (Joyner and Rohli, 2010),
mass extinctions (Wang, 2003), etc.). We believe that adding these
sorts of confidence estimations to strain analysis will help inves-
tigators make informed and reasonable geological interpretations
while providing feedback about their data collection techniques,
and help them to decide when more data is needed to constrain
a structural problem. The methods proposed in this contribution
build on these investigators’ work, and our program suite is
intended to fulfill most of the computational and graphical needs of
the structural geologist community for three-dimensional strain
analysis.

2. Why Mathematica?

The primary reason for using Mathematica is that it allows for
the relatively easy modification of the programs to suit the users’
specific needs. While the programs are designed to accommodate
many different user preferences, more specific user requirements
will exist. Fortunately, Mathematica provides a favorable environ-
ment for user customization, including a very useful help system,
on-line support forums, and their Technical Support Group.
Mathematica runs on most operating systems (e.g., Windows, Mac
OS, and Linux). Additionally, Wolfram Research ensures that new
versions of Mathematica that are functional with older Mathema-
tica files/programs. Finally, Mathematica has superb graphical
capabilities which produce interactive three-dimensional plots
(e.g., ellipsoids) and create animations, both of which usefully
convey complex ideas and geometric relationships.

3. Determining the best-fit ellipsoid

The term “best-fit” is often employed with little thought for
what criterion makes something the “best.”With regards to a best-
fit ellipsoid, our initial preference was to define the best fit as the
one that has the minimum difference between the set of “mean”
axial ratios (Rf) and “mean” angular orientations (f) from the initial
data set and those of a general ellipsoid (e.g., see the Methods
section of Strine and Wojtal (2004)). This outcome is achieved by
calculating the equations for the Rf and the f of a specific plane in
terms the matrix elements of a symmetric 3� 3 matrix. These
equations are then subtracted from their corresponding “mean” Rfs
and fs for the specific plane. Then, in a typical least-squares
approach, the differences are squared and summed together, and
this entire error function is minimized in terms of the six matrix
elements. While this approach does yield reasonable results, we
now believe that this method falls just short of generating the best
fit because it treats the Rfs and the fs as independent parameters. If
a two-dimensional strain marker is very nearly circular, its indi-
vidual angular orientation is largely independent of the “mean”
angular orientation. In contrast, the angular orientation of a strain
marker with a relatively large aspect ratio should have a signifi-
cantly greater effect on the “mean” angular orientation (e.g.,
Dunnet, 1969; Matthews et al., 1974; Shimamoto and Ikeda, 1976;
Robin, 1977; Mulchrone et al., 2003; Choudhury and Mulchrone,
2006). Thus, simply using the vector and harmonic means as
defined by Lisle (1985) neglects to account for this interdepen-
dence. A further weakness of the method proposed by Strine and
Wojtal (2004) is that a quantitative judgment is required by the
user on which parameter (Rf or f) is weighted more heavily. This
extra degree of freedom makes it difficult to call any solution the
best fit.

Despite these imperfections in the Strine and Wojtal (2004)
method, we appreciate the approach of minimizing the error
between the input data and the fit solution. Furthermore, we
suggest that any fitting method needs to be evaluated with this
criterion in mind, i.e., a best-fit ellipsoid is the one that has the
minimum difference between the input data and the fit solution.
For this reason, the method that we propose involves the minimi-
zation of an error function, i.e., a function that represents that error
associatedwith the difference between the input sectional data and
any general ellipsoid. While this numerical approach may seem to
employ brute force, particularly when compared to the more
analytical solution of Robin (2002), we hope that our users will
benefit from the transparency of our relatively simple procedure.
We hope that demystifying this process will help investigators
think more critically about the quality of their data and potentially
make improvements and customizations to the software. During
the testing of our method, we generated one hundred ellipsoids of
random shape and orientation and calculated the sectional ellipses
for three to six randomly oriented planes for each ellipsoid. This
data set was used to compare the results of our programwith those
of Launeau and Robin (2005). The results were consistently similar
in that the median angular difference between the twomethods for
the principal axes orientations is less than one degree, the median
difference in octahedral shear strain was 0.004, and the median
difference in Lode’s ratio was 0.019. Therefore, we conclude that
both methods are equally valid. We hope that users will find value
in the customizability of our programs (e.g., adding a statistical
analysis as described below) as well as the variety of graphical
outputs.
3.1. Two-dimensional data

To begin fitting a three-dimensional ellipsoid to data, one first
needs two-dimensional sectional data. Many methods exist for
determining a two-dimensional “mean” ellipse (e.g., the Fry
Method, Rf/f, various Mohr circle methods, the HaughtoneBreddin
method of using fossils with bilateral symmetry, etc.). The resulting
ellipses from any of these methods can be input into one of the
best-fit ellipsoid programs (either manually or read in from a file).
However, if an investigator has a data set of individual elliptical
measurements (e.g., measurements from deformed quartz grains),
then those data sets can be copied into the appropriate *.txt or *.xls
file, and the programwill read in this file and determine the “mean”
elliptical shape for each of the sections automatically. The “mean”
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ellipses are determined by averaging ellipse shape tensors as
described by Shimamoto and Ikeda (1976) and Wheeler (1984).

The default sign convention for the best-fit ellipsoid programs is:
1) all sectional data are viewed looking downward, 2) perfectly
vertical planes are viewed looking westward and if the vertical
planes strike exactly eastewest, the plane is viewed from the south
to the north, 3) the orientation angle (f) is measured from the long
axis of the ellipse to the strike line of the sectional plane, 4) f is
positive when it has a positive slope and negative when it has
a negative slope (Fig. 1a), and 5) for perfectly horizontal planes, f is
measured from the eastewest line such that the NE quadrant is
positive and the SE quadrant is negative. Because potential users
may collect their data using the program ImageJ, an additional set of
best-fit ellipsoid programs have been produced which are consis-
tent with the sign convention employed by ImageJ (all programs
with “for ImageJ” in thefile name/title). For these programs, the sign
convention number 4) differs. Instead of defining f from �90�

toþ90�, this programdefinesf from0 to180�. Therefore,f is always
positive and is measured counterclockwise from the positive hori-
zontal axis to the ellipse’s principal long axis (Fig. 1b).
3.2. Assembling the error function

To assemble the error function, we first convert the initial data
set into a set of 2� 2 matrices. The mean axial ratio (Rf) for a given
section can be inserted into amatrix in its principal reference frame:

PM ¼

2
6666664

ffiffiffiffiffiffiffiffi
1

Rf2

s
0

0
1ffiffiffiffiffiffiffiffi
1

Rf2

s

3
7777775

(Ramberg, 1975; Tikoff and Fossen, 1993). This matrix can then be
rotated into the appropriate orientation, i.e. by the angle f, to yield
the data matrix,
Fig. 1. a) Our default sign convention for the “Best-Fit Ellipsoid” programs, b) the sign
convention used by ImageJ.
DM ¼
�
Cos½f� �Sin½f�
Sin½f� Cos½f�

�
$PM$

�
Cos½f� Sin½f�
�Sin½f� Cos½f�

�

If the user wishes to determine the absolute size of the ellip-
soidal marker, then she/he should use any of the best-fit ellipsoid
programs with “absolute” in the file name/title. These programs do
not use the axial ratio to assemble the PM matrix. Instead, they use
the inverse of the squared lengths for the ellipse’s principal axes for
the diagonal elements of PM.

Next, we define what we call the general ellipsoid,

GE ¼
2
4 lxx gxy gxz
gxy lyy gyz
gxz gyz lzz

3
5

Any three-dimensional ellipsoid (or hyperboloid, as discussed
below) can be represented in this form. We can then calculate the
2� 2 matrix for the ellipse that results from cutting the general
ellipsoid with a planar section through the center. This planar
section is one of the planes from which the investigator has
collected his/her data, and is input by the user in terms of the
plane’s dip and dip direction. To calculate the 2� 2 matrix for the
sectional ellipse, the general ellipsoid undergoes two independent
rotations such that the planar section is parallel with one of the
reference frame planes, where our reference frame is defined by
north, east, and up (Fig. 2). This process is: 1) rotate the general
ellipsoid such that the planar section is striking eastewest (Fig. 2b),

VR ¼
2
4Cos½DipDir� 90+� �Sin½DipDir� 90+� 0
Sin½DipDir� 90+� Cos½DipDir� 90+� 0

0 0 1

3
5

$GE$

2
4 Cos½DipDir� 90+� Sin½DipDir� 90+� 0
�Sin½DipDir� 90+� Cos½DipDir� 90+� 0

0 0 1

3
5;

and 2) rotate the resulting matrix about the eastewest line so that
the planar section is vertical (Fig. 2c),

ER ¼
2
41 0 0
0 Cos½90� Dip� �Sin½90� Dip�
0 Sin½90� Dip� Cos½90� Dip�

3
5

$VR$

2
41 0 0
0 Cos½90� Dip� Sin½90� Dip�
0 �Sin½90� Dip� Cos½90� Dip�

3
5:

Now that the general ellipsoid is in the appropriate orientation, the
corner elements of this matrix can be used to form a 2� 2 matrix
which represents the elliptical section through the general
ellipsoid,

EM ¼
�
ER11 ER13
ER31 ER33

�� �
Det

�
ER11 ER13
ER31 ER33

��2
!1

4

(Fig. 2d). Notice that the equation for EM includes dividing the
matrix of the corner elements of ER by the square root of its
determinate. This step ensures that the method works for axial
ratios of approximately elliptical markers without requiring the
absolute lengths of the axes, i.e. the EM matrix is normalized with
respect to the ellipse area. The determinant is squared and then
fourth-rooted instead of simply taking the square root to avoid the
possibility of imaginary numbers. The best-fit ellipsoid programs
that determine the absolute size of the ellipsoidal marker do not
normalize the EM matrix.

At this point, the error associated with the data from a given
plane with respect to the general ellipsoid can be calculated:
EFi¼ (DM11,i� EM11,i)2þ (DM12,i� EM12,i)2þ (DM22,i� EM22,i)2,
where i is an indicator of the given data plane. By summing the



Fig. 2. a) While the illustrated ellipsoid is specified for graphical reasons, it represents all possible ellipsoids, i.e. the general ellipsoid, GE. The plane represents one of the planar
sections from which an investigator has collected two-dimensional strain data, b) the general ellipsoid has been rotated such that the planar section is now striking EeW, c) the
general ellipsoid has been further rotated so that the planar section is now vertical, d) this ellipse represents the elliptical section through the general ellipsoid for this specific plane
along with the associated 2� 2 matrix in terms of the general ellipsoid’s matrix components.
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error terms for each of the individual data planes, we obtain the
overall error function:

Xn
i¼1

�
DM11;i � EM11;i

	2þ�DM12;i � EM12;i
	2þ�DM22;i � EM22;i

	2

where n is equal to the number of data planes ranging from
a minimum of three to, theoretically, infinity. This function is now
expressed in terms of the general ellipsoid and includes the entire
strain data set (i.e., Rfs (or absolute ellipse principal axes lengths),
fs, and the dips, and dip directions of data planes). For any given
values of the ls and gs, the error function is a scalar quantity
proportional to the “goodness” of the fit; the smaller this number,
the better the fit. For the best-fit ellipsoid programs where the
sectional data is in the form of axial ratios, determining the abso-
lute size of the ellipsoid is not a goal. Thus, the error function can be
further constrained by setting lyy equal to one. Now, all that
remains is to minimize the error function. We do so with Mathe-
matica’s built-in “FindMinimum[]” function, which uses a minimi-
zation routine based on a steepest descent algorithm. In this way,
we determine the best-fit ellipsoid.

Clearly, it is important also to report some measure of the
compatibility of the initial two-dimensional data sets. We have
chosen to report the mean of the absolute values of the differences
between the initial data 2� 2 matrix elements and those of the fit
ellipsoid:
Pn
i¼1
�

DM11;i�EM11;ijþ



DM12;i�EM12;i


þ 

DM22;i�EM22;i



	
3�n

:

This “Mean Error,” as we refer to it in the program output, effec-
tively quantifies the difference between the initial input data set
and the final fit solution.

As was mentioned above and by Launeau and Robin (2005),
the class of matrices represented by GE also includes hyperbo-
loids. A hyperboloid is defined by a symmetric 3� 3 matrix with
at least one negative eigenvalue. It is entirely possible that
a hyperboloid fits a data set of ellipses better than an ellipsoid. To
ensure against a hyperboloid solution, the best-fit ellipsoid
programs constrain the FindMinimum[] function such that solu-
tions with negative eigenvalues are not acceptable. However, this
additional constraint does not alleviate the problem that the data
set itself does not fully constrain the solution, i.e., more data are
needed from an additional planar section. Thus, when the
constraint in the FindMinimum[] function is necessary, it gener-
ally finds a solution which is near the boundary between the area
defining hyperboloids and ellipsoids. All matrices in the class GE
associated with this boundary have at least one eigenvalue equal
to zero. Therefore, in these cases, the solution that the program
will output is one for which an eigenvalue is nearly zero, which
translates to a fitted ellipsoid with an unrealistically large long
axis. While this is the best-fit ellipsoid for the given data set, the
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program will output a suggestion to the user that she/he should
most likely collect data from an additional planar section to
further constrain the ellipsoid shape.
3.3. Graphical output

One of our goals for providing the best-fit ellipsoid programs is
to provide users with an assessment of the quality of their data.
Reporting the “Mean Error” is one important way of doing this.
However, many users may lack an intuitive understanding for
how this number relates to the compatibility of their initial data
set. This issue is why having graphical representations of the
sectional data is so important. Showing the users the initial input
ellipse on top of the elliptical section through the fit ellipsoid for
the same plane gives them an intuitive feel for the quality of their
data (Fig. 3). In addition to the sectional ellipses, the best-fit
ellipsoid programs output a representation of the ellipsoid in
the geographic reference frame (both with representations of the
sectional planes and without), a Flinn diagram (Flinn, 1962) with
both Flinn’s k-value and octahedral shear strain ( 3s) (Nadai, 1963)
contrours, and a Hsu plot (Hossack, 1967) with both Lode’s ratio
(n) and 3s contours (Fig. 4a,b,d). For the best-fit ellipsoid programs
that incorporate a statistical component, both the Flinn and Hsu
plots include an error region (Fig. 4b,d). Additionally, the statis-
tical programs include equal area projections of the set of prin-
cipal axes orientations produced by the simulation (Fig. 4c). These
graphical aids are intended to facilitate the investigator’s ability to
quickly evaluating his/her data as well as providing graphical
elements for figures (e.g., Strine and Wojtal, 2004; Strine and
Mitra, 2004).
4. Statistical analysis

Running the best-fit algorithm yields a best-fit ellipsoid for
a given data set. However, this result does not give the user
a sense of reliability for their initial data, as it conveys no infor-
mation about the error margin associated with the fit. The user
should not interpret a small “Mean Error” as an indication that the
data have yielded an accurate solution. The “Mean Error” simply
indicates that the input data are consistent with the fitted ellip-
soid, but it is certainly possible for an ellipsoid to fit inaccurate
data very well.
Fig. 3. Section ellipses output from the “Best-Fit Ellipsoid” program. The red ellipse is the in
a given planar orientation. (For interpretation of the references to color in this figure legen
4.1. Non-applicability of standard large-sample theory

One common approach for obtaining error bounds is to rely on
the Central Limit Theorem and utilize the Multivariate Delta
Method. Two factors prohibit us from pursuing such a route to
construct the error bounds for our parameters of interest. First, the
function used to determine the best-fit ellipsoid is complicated.
Consequently, calculating the partial derivatives required to utilize
the Multivariate Delta Method is cumbersome. The second factor,
the incorporation of measurement error in the orientations of the
data planes, is even more problematic. The fact that the perceived
planar orientations can differ from true orientations has a very
similar effect to measurement error in the actual elliptical data.
Working in the presence of measurement error can cause the
standard large-sample theory to break down. The means and/or
variances of the approximating normal distributions are generally
not the same as the true theoretical quantities. Given this, we
pursue an alternative approach.
4.2. A simulation-based approach to obtaining error bounds

Being unable to use the standard theoretical machinery, we
apply an iterative simulation-based approach similar to Yonkee
(2000) to gain insight into the error margins associated with
fitted ellipsoids and any parameters estimated from that fit. This
approach helps determine how sensitive the fitted ellipsoid is to
small changes in the input data. Ostensibly, if small changes in the
input data result in small changes in the fit, then one can perceive
the fit to the initial data set as relatively reliable. Conversely, if
small changes in the data lead to vast changes in the fit, then
clearly one must interpret the original best-fit solution with
caution.

The simulation consists of several steps. The first step is to
calculate the mean values of Rf and f for each of the cross-sectional
samples, as described above. These values, along with the orien-
tations of the planar sections are used to obtain the best-fit ellip-
soid. Next, the iterative procedure begins by randomly perturbing
each pair (Rf and f) of mean values. The values of these perturba-
tions are obtained by randomly drawing an observation from
a bivariate normal distribution with a mean vector equal to zero
and a variance covariance matrix obtained from the corresponding
elliptical data sets. In so doing, we essentially estimate the sample
itial input data and the blue ellipse is the elliptical section through the fit ellipsoid for
d, the reader is referred to the web version of this article.)



Fig. 4. Graphical output of the “Best-Fit Ellipsoid with Statistics” program. a) best-fit ellipsoid with the sectional planes represented cutting through the center of the ellipsoid, b)
Flinn diagram with the best fit and simulation-derived data and the resulting error region, c) equal area plot of 200 ellipsoid long axes produced during the simulation, and d) Hsu
plot with the best fit and simulation-derived data and the resulting error region.
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distribution for each pair of elliptical data (Rf and f) with a specific
correlation calculated from the initial data set, and then randomly
generating a value from these bivariate normal distributions.
Furthermore, the orientations of the collection planes for the
elliptical data are also randomly perturbed, each by a value
randomly generated from a normal distribution with a mean equal
to zero and a standard deviation specified by the user. A best-fit
ellipsoid is then fit to this collection of new input values. Finally,
this procedure can be repeated indefinitely so as to obtain a pop-
ulation of best-fit ellipsoids fromwhich a statistical analysis can be
performed.

The first type of random perturbation helps the user to under-
stand the effect that natural variation in the estimates of the true
mean values of the Rf’s and f’s might have on the fitted ellipsoid.
The perturbation of the sectional plane orientations helps to
quantify the effect of measurement error on the best-fit solution. By
conducting a large enough number of iterations and examining the
collection of fitted ellipsoids, one gains a notion of the error
magnitude associated with the best-fit ellipsoid. Our way of
examining this collection of ellipsoids is to uses a technique known
as kernel density estimation. This technique determines the error
bounds for the ellipsoid shape parameters, i.e., octahedral shear
strain ( 3s), Lode’s ratio (n) and Flinn’s k-value. Since the ellipsoid
size is not a contributing factor to the values of these parameters,
the axes lengths are normalized such that the intermediate axis has
unit length. Consequently, these ellipsoidal shape parameters are
functions of two values, namely the lengths of the long (l1) and
short (l3) axes. Point estimates of each parameter value are thus
obtained by applying the appropriate functions to the values of the
l1 and l3 of the best-fit ellipsoid. To provide error margins along
with the point estimates, we fit a kernel density estimator to the
collection of values of l1 and l3 of the ellipsoids generated in this
iterative.

Kernel density estimation is a non-parametric method of esti-
mating the probability density function of a random variable or
random vector. The kernel density estimator (KDE) is constructed
by placing a kernel function at each of a collection of values. A
handful of kernel functions are commonly used. Of those, we used
a bivariate normal kernel function. Additionally, when fitting a two-
dimensional KDE, one must specify two bandwidths, which we set
for the l1 direction and the l3 direction. Although these bandwidth
parameters can heavily influence the shape of the density esti-
mator, especially its peakedness, we will primarily be interested in
calculating volumes under the KDE. As volume calculations tend to
not be significantly sensitive to peakedness, it is adequate to use the
fairly standard bandwidths:
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hi ¼ 4� 1:06�minf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðLiÞ

p
; IQRi=1:34g � N�1=5;
for i ¼ 1;3

where L1 and L3 represent the collection of long and short axis
measurements obtained from the iterative process, IQR1 and IQR3
are the interquartile ranges of L1 and L3, and N is the number of
iterations. Wasserman (2004) and Hastie et al. (2001) provide
excellent introductory expositions about kernel density estimation.

The value of the KDE at any given point is the average of all of the
individual kernel values:

KDE½l1; l3� ¼ 1
2p� N � h1 � h3

*
XN
i¼1

exp

"
� 1
2

 �
l1 � L1;i

h1

�2

þ
�
l3 � L3;i

h3

�2!#

This results in the KDE having large values for regions which
contain many points, and small values for regions containing few or
no points. After calculating the KDE, one can interpret its value as
a relative likelihood. The random quantity that the KDE is modeling
is more likely to assume a value where the KDE is large than where
it is small. Fig. 5a illustrates an example of a KDE generated from
the “Best-Fit Ellipsoid with Statistics” program.

Once the KDE for l1 and l3 is constructed, we use it to obtain
error bounds for the point estimates of the various parameters. The
first step is to specify a desired degree of certainty associated with
the error margin (95% is the default value). Next we determine the
smallest region in l1 versus l3 space such that the volume of the
space above this region to the KDE is approximately 0.95. To do so,
consider a set in the l1el3 plane such that the integral of the KDE
over the set is at least 0.95. Now, letA represent the class of all such
sets, define Az ¼ fðl1; l3Þ : KDEðl1; l3Þ > zg, and let IðzÞ be the
integral of the KDE over Az. Note that for 0� z� KDEmax, I is
a decreasing function of z and ranges from 1 to 0 as z ranges from
0 to KDEmax, respectively. Consequently, it has an inverse function
with domain [0,1], say I�1ðvÞ ¼ z. Let I�1ð0:95Þ ¼ z0. Then Az is in
A, and no other set in A has an area smaller than Az0 . Computa-
tionally, we obtain the set Az0 as an approximating set of rectangles
(Fig. 5b). The user can specify a value (0.0001 by default) to control
the magnitude of the error associated with this approximation.
Fig. 5. a) The kernel density estimation surface generated from a simulation-derived data
angular grid underneath the kernel density estimation delimiting the 95% error boundary.
To obtain error margins for 3s, n, and k, we calculate their values
at the center of each rectangle contained in the collection used as
the approximation of Az0 . Each of the resulting ranges of values is
taken as the interval estimate for the corresponding parameter. Our
experience suggests that this method tends to be fairly conserva-
tive. By this, we mean that if we interpret the ranges as confidence
intervals for the unknown parameters, then our true level of
confidence that the range contains the theoretical value of the
parameter is somewhat larger than the input degree of uncertainty
(e.g., 95%). While this situation may not be ideal as it gives rise to
larger interval estimates, we find this situation more acceptable
than the converse. Fig. 6 illustrates an example of a strain analysis
conducted on five samples taken from the Bitterroots Detachment
Lobe, Montana. Notice that two samples have very large error
bounds in terms of their Flinn’s k-value (Fig. 6d). Understanding the
relative reliability of each of these strain data points will assist in
making the most reasonable kinematic interpretations of the data
set.

4.3. Error bounds for axes orientation

In addition to determining error margins for the ellipsoid
shape parameters, the statistical programs also provide error
bounds for the orientation of the ellipsoid principal axes. While
observing the distribution of the simulation-derived axes orien-
tations with respect to their angle away from the best-fit axis, we
found that the orientations appeared to follow a gamma distri-
bution (Fig. 7). After fitting a gamma density to the orientations,
this density function can be used in much the same way the
kernel density estimate was used to find error bounds. More
specifically, we can simply integrate the fitted gamma density to
find the smallest range containing 95% of the distribution. In
doing so, we provide a margin of error associated with our point
estimate of axis orientation. While some investigators may be
more comfortable using Fisherian statistics and calculating an
“alpha” angle, as is often used during paleomagnetic studies in
which a95 is a fairly standard parameter (e.g., Butler, 1992), we
propose that the gamma distribution-derived error margin is
more easily interpreted and likely more accurate. The a95 angle is
generally an order of magnitude less than the gamma angle for
simulations where N equals one hundred. It is known in
set from the “Best-Fit Ellipsoid with Statistics” program, b) the two-dimensional rect-



Fig. 6. Three-dimensional strain analysis from five samples collected from the Bitterroots Detachment Lobe, Montana. a) typical photomicrograph from the detachment zone, b)
digital quartz grain tracings created using a tablet monitor, c) best-fit elliptical grain shape approximations determined using ImageJ, d) Flinn diagram output from the program
“Flinn Plot with Error Regions.” Octahedral shear strain contour interval is 0.25 and k-value contours¼ 10, 5, 2, 1, 0.75, 0.5, 0.25, and 0.1. These contour values are visible in
Mathematica when the user mouses over any of the lines.
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paleomagnetics that over-sampling can unrealistically reduce the
a95 angle (Butler, 1992). Therefore, for strain analysis where the
simulation can have as many iterations as the user wishes, we
suggest that the gamma distribution-derived values be used. Still,
Fig. 7. a) Example of gamma distributions. Note that exponential decay is a special case of
orientations with respect to the best-fit axis with the corresponding gamma function over
the statistical best-fit ellipsoidal program can calculate an a angle;
although, by default, this feature is turned off.

The user may discover that their gamma distribution-derived
error angle is particularly large because two of the three principal
a gamma distribution, b) histogram of the angle between the simulation-derived axes
lain.
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axes are very similar in lengths (i.e., nearly prolate or nearly oblate
ellipsoids) and small variations in the data will drastically change
their orientation. However, this variation is not random about
a mean orientation, but instead defines a plane. In this case,
reporting the large error angle does not tell the full story. For this
reason, when the program detects this case, it also fits a plane to the
axes orientations, and reports the orientation of that plane and the
mean difference angle between the axes and the best-fit plane. This
phenomenon can be observed by running the sample file “Sample
Strain Data with Std Dev-ABS.xls” in the “Best Fit Ellipsoid with
Statistics-Absolute” program. The statistical best-fit ellipsoid
programs attempt to fit a plane to axes orientation data if the error
angle is above a prescribed amount (the default is set at 5�) and will
report the orientation of that best-fit plane only if the mean
difference angle is small enough (the default is set at 1�).

5. Discussion

5.1. Strain analysis

We present a suite of strain analysis programs designed to
provide transparency with respect to the quality of the user-
provided data set. During its development, the Best-Fit Ellipsoid
program was extensively tested with many different ellipsoid
shapes and orientations, number of data planes, and data plane
orientations (over 3000 combinations in total). Testing showed that
certain combinations of planes and ellipsoid orientations are more
prone to yielding a hyperbolic solution. When varying the length of
the long axis of the ellipsoid changes the sectional ellipses only
marginally, hyperbolic solutions are not uncommon. For instance,
imagine four planes all dipping 45� and with evenly distributed dip
directions. Now imagine these planes cutting through the center of
a prolate ellipsoid with a vertical long axis. Changing the length of
this long axis from 10 to 20 (while the other two axes are set at one)
does not significantly alter the aspect ratio of the resulting elliptical
section (only by z0.005) and does not change the angular orien-
tations at all. Strain analysis of this example could easily lead to
a hyperbolic solution. Moreover, the octahedral shear strains for
these two ellipsoids are considerably different. Even if the data did
not result in a hyperbolic solution, performing a statistical analysis
is necessary to illustrate the data’s sensitivity to small perturba-
tions by yielding very large error estimate with respect to the 3s. In
this example, the investigator should collect additional data from
a section that approximately contains the long axis of the ellipsoid
to further constrain the solution.

Ultimately, we feel that investigators will be advantaged by being
more thoughtfulwhen choosing the orientations of theirdataplanes.
Given that always using three mutually perpendicular sections does
not always yield the best results, investigators need away to evaluate
the effect of their sectional plane choices on the final result. One
problem with using three mutually perpendicular sections is that
investigators often choose the foliation plane as one of the planes,
which, formanydeformedrocks, is theworstplane for collectingdata
because the foliation plane is often defined by mineralogical and
textural variation rather than strain geometry.While the first author
admits to using this plane for collecting strain data in the past, with
further consideration, it seems ill-advised to choose a plane that by
its very nature can yield vastly different results depending onwhich
foliation surface one happens to observe. We recommend that
investigators performing a strain analysis, whenever possible, utilize
a more iterative approach. While three data planes may be an
appropriate number of planes to start a strain analysis, we suggest
that after completing a statistical analysis an investigator should
evaluate whether a strategically placed additional section would
significantly further constrain the solution.
In addition to the standard kinematic parameters, the best-fit
ellipsoid program presents the option of calculating a new kine-
matic parameter. At the very bottom of the code, the user can
evaluate the last cell and calculate the out-of-plane natural strain
( 3OP). To be able to calculate this parameter, the user needs to know
the orientation of the regional motion plane/shear plane. The
program will then calculate the natural strain (Ln[l/l0]) in the
direction perpendicular to this plane. While the program auto-
matically plots the data on both Flinn and Hsu plots, these plots
neglect to account for the orientation of the strain ellipsoid. For
instance, a plane strain ellipsoid (i.e., where k¼ 1 and n¼ 0)
oriented with its long axis perpendicular to the thrusting direction
does not represent a plane strain deformation. 3OP will specify how
much material is moving laterally, which in this case would be
significant despite being a “plane strain” ellipsoid. This calculation
(as with all of the strain parameters) assumes no volume loss.

6. Conclusions

The “Geological Programs for Mathematica” is a suite of
programs for geologists to undertake quantitative analysis with
a particular focus on strain analysis. The authors hope that these
programs will facilitate the undertaking of three-dimensional
strain analysis by more investigators, leading to more thoughtful
selection of sectional data planes and reporting error bounds along
with kinematic data.
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